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� Individuals with rotator cuff tendinopathy present inter-hemispheric asymmetry of infraspinatus
active motor threshold.

� Chronicity of pain, but not its intensity, appears to be a factor related to lower excitability of infraspi-
natus representation.

� This study is the first to show central motor alterations in relation with rotator cuff tendinopathy
which should be considered in the rehabilitation process of this population.

a b s t r a c t

Objective: To investigate whether rotator cuff tendinopathy leads to changes in central motor represen-
tation of a rotator cuff muscle, and to assess whether such changes are related to pain intensity, pain
duration, and physical disability.
Methods: Using transcranial magnetic stimulation, motor representation of infraspinatus muscle was
assessed bilaterally in patients with unilateral rotator cuff tendinopathy.
Results: Active motor threshold is significantly larger for the affected shoulder comparatively to the
unaffected shoulder (n = 39, p = 0.01), indicating decreased corticospinal excitability on the affected side
compared to unaffected side. Further, results suggest that this asymmetry in corticospinal excitability is
associated with duration of pain (n = 39; r = 0.45; p = 0.005), but not with pain intensity (n = 39; r < 0.03;
p > 0.43). In contrast with findings in other populations with musculoskeletal pain, no significant inter-
hemispheric asymmetry was observed in map location (n = 16; p-values P 0.91), or in the amplitude
of motor responses obtained at various stimulation intensities (n = 16; p = 0.83).
Conclusion: Chronicity of pain, but not its intensity, appears to be a factor related to lower excitability of
infraspinatus representation.
Significance: These results support the view that while cortical reorganization correlates with magnitude
of pain in neuropathic pain syndromes, it could be more related to chronicity in the case of musculoskel-
etal disorders.
� 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction conditions (Pope et al., 1997; Picavet and Schouten, 2003). Disor-
Shoulder pain affects about 20% of the population and is second
only to low back pain in prevalence of musculoskeletal (MSK)
ders of rotator cuff (RC) tendons is the most common pathology
of the shoulder, with RC tendinopathy accounting for 35% to 50%
of rendered diagnoses (Chard et al., 1991; van der Windt et al.,
1995). Clinical trials suggest that long-term outcomes of patients
with RC disorders receiving rehabilitation are comparable to that
of patients treated with surgery (Brox et al., 1999; Haahr and
Andersen, 2006; Seitz et al., 2011). Regardless of treatment, more
than a third of patients do not have a positive outcome as they
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continue to present pain and disability after the intervention (Seitz
et al., 2011).

It has been recently hypothesized that reorganization of the
somatosensory and motor cortices could explain part of the deficits
associated with RC tendinopathy (Myers et al., 2006; Roy et al.,
2009; van Vliet and Heneghan, 2006). This reorganization could
also explain the chronicity of the symptoms and the lack of treat-
ment effectiveness for one third of patients. Central changes
underlying movement deficits associated with RC tendinopathy
remain unclear. To our knowledge, they have never been directly
tested in this population. However, changes in the central nervous
system (CNS) have been documented in patients with other MSK
disorders, primarily regarding the functional organization of the
primary somatosensory and motor cortices (van Vliet and
Heneghan, 2006; Boudreau et al., 2010). Consequently, under-
standing the involvement of CNS in MSK disorders is now consid-
ered as a key aspect to improve the management of patients with
such disorders (Tsao et al., 2010; Tsao et al., 2008).

Current interventions for RC tendinopathy mainly target deficits
at the joint level, such as altered posture (Gumina et al., 2008;
Finley and Lee, 2003; Kalra et al., 2010; Kebaetse et al., 1999), mus-
cular deficit (weakness/lack of endurance) (Ludewig and Cook,
2000; Wadsworth and Bullock-Saxton, 1997; Cools et al., 2003;
Cools et al., 2004; Cools et al., 2007) and soft tissue tightness
(Tauro and Paulson, 2008). However, if central (neural) changes
are present in individuals with RC tendinopathy, then specific
interventions, such as sensorimotor training, should be performed
in order to reverse these changes and thereby decrease pain during
arm movement. Reversal of central changes related to the periph-
eral lesion could be an important step towards recovering a normal
level of shoulder function.

Given the high prevalence of RC tendinopathy, and continued
pain symptoms in one third of the patients despite treatment,
research to better understand the factors that may explain the per-
sistence of pain in individuals with RC tendinopathy is needed in
order to guide the development of more effective treatment
approaches. The first objective of the current study was to investi-
gate whether individuals with RC tendinopathy exhibit changes in
the excitability and location of the cortical motor representation of
a RC muscle. The second objective was to determine whether such
central changes are related to clinical variables such as pain inten-
sity, pain duration, and physical disability.
2. Methods

2.1. Participants

Thirty-nine participants (18 women, 21 men; mean age
46 ± 11 years) with unilateral RC tendinopathy were recruited
(see Table 1 for participants’ characteristics). Participants were
considered eligible if they were aged between 18 and 65, presented
pain in one shoulder, and had at least one positive finding in each
of these categories: 1) painful arc of movement during flexion or
abduction; 2) positive Neer or Kennedy-Hawkins impingement
signs; 3) pain on resisted lateral rotation, abduction or Jobe test.
The diagnosis accuracy of these tests for RC tendinopathy has been
shown (sensitivity & specificity P 0.74, Positive likelihood
ratio = 3–5) (Michener et al., 2009).

Exclusion criteria were previous shoulder surgery, cervicobra-
chialgia or shoulder pain during neck movement, shoulder capsu-
litis (P 30% restriction of passive glenohumeral movement for
two or more directions), clinical signs of a full thickness RC tear
(dramatic weakness on resisted movement or positive Lag signs),
pain or movement limitation at the unimpaired shoulder, current
use of steroidal anti-inflammatory or opioids drugs, as well as
contraindications for magnetic resonance imaging (MRI) or trans-
cranial magnetic stimulation (TMS) (e.g. metallic or electronic
implants, pregnancy, history of epilepsy, etc.) (Rossi et al., 2009).
None of the subjects had a reported history of neurological deficit
or systemic disease. This study was approved by the Ethics Com-
mittee of the Quebec Rehabilitation Institute. All participants gave
their written consent after being informed of the nature and pur-
pose of the study.

2.2. Experimental design

Each participant took part in two evaluation sessions within
7 days. During the first session, after the evaluation of eligibility
criteria, participants completed a questionnaire on sociodemo-
graphic, symptomatology, and comorbidity. Hand dominance was
determined using the revised Edinburgh Handedness Inventory
(Oldfield, 1971). Then, the level of pain and disability of the shoul-
der was evaluated using the French Canadian version of the Dis-
abilities of the Arm, Shoulder and Hand (DASH) questionnaire
(Durand et al., 2005). The DASH is a 30-item self-reported ques-
tionnaire that addresses difficulty in performing various physical
activities that require upper extremity function (21 items); symp-
toms of pain, activity-related pain, tingling, weakness, and stiffness
(5 items); and impact of disability and symptoms on social activi-
ties, work, sleep, and psychological well-being (4 items) (Hudak
et al., 1996). Response options are rated on a 5-item Likert scale.
The final score range from 0 (no disability) to 100 (most severe
disability).

Visual analog scales (VAS; 0 to 10) were also used to estimate
participants’ reported pain level during the 48 h preceding the test
at rest, during daily activities, and during nighttime. For the first 16
participants included in the study, a structural MRI of the brain
was obtained in order to use a frameless stereotaxy neuronaviga-
tion system (Brainsight, Rogue Research, Canada) for cortical map-
ping. This system allows accurate and reliable positioning of the
TMS coil. For the other 23 participants, frameless stereotaxy neuro-
navigation system was also used, but participants’ heads were
coregistered with a standard MRI. In the following days, all the par-
ticipants took part in a second evaluation session during which the
motor cortex representation of a RC muscle was assessed
bilaterally.

2.3. Cortical mapping

The infraspinatus has been selected as the target muscle for cor-
tical mapping as it is a RC muscle for which the activation pattern
has been shown to be altered during arm elevation in individuals
with RC tendinopathy (Reddy et al., 2000). Furthermore, it is the
only RC muscle for which the electromyographic (EMG) activity
can be directly recorded using surface electrodes. Mapping was
performed using a BiStim2 stimulator (combined pulse mode) con-
nected to a 70-mm figure-of-eight coil (Magstim Company Limited,
United Kingdom). Stimuli were applied over grid sites spaced 1 cm
apart and located over the upper limb representation of primary
motor cortex (M1) in the contralateral hemisphere (using the
neuronavigation system).

Motor evoked potentials (MEPs) were collected from the EMG
recording of the infraspinatus muscle. After skin preparation, a pair
of Ag/AgCl surface electrodes (1 cm2 recording area) was placed
over the infraspinatus muscle. The ground electrode was posi-
tioned over the ipsilateral acromion. Electrode placement over
infraspinatus was based on Delagi & Perotto, i.e. 3–4 cm below
and running parallel to the spine of the scapula, over the infraspi-
natus fossa (Delagi and Perotto, 1980). This arrangement has
shown high levels of agreement between surface and intramuscu-
lar recordings (Johnson et al., 2011). EMG signals were amplified



Table 1
Participants’ characteristics.

Variables All participants
(n = 39)

Participants for motor mapping
(n = 16)

Subgroups*

Low chronicity < 12 months
(n = 21)

High chronicity P 12 months
(n = 18)

Age, years, �X ± SD 46 ± 11 49 ± 10 45 ± 10 47 ± 12
Gender - Female, n (%) 18 (46%) 8 (50%) 10 (48%) 8 (44%)
Weight, kg, �X ± SD 77 ± 17 77 ± 17 79 ± 20 74 ± 14

Height, cm, �X ± SD 169 ± 9 168 ± 9 169 ± 10 169 ± 8
Dominance – Right handed, n

(%)
34 (87%) 15 (94%) 18 (86%) 16 (88%)

Dominant affected side, n (%) 25 (64%) 14 (70%) 13 (62%) 12 (66%)
Symptoms duration, months, �X

± SD
19 ± 21 24 ± 26 6 ± 4 36 ± 23

DASH, /100, �X±SD 29 ± 15 26 ± 16 30 ± 15 26 ± 14

VAS - Pain at rest, /10, �X±SD 2.0 ± 1.7 2.1 ± 1.9 1.8 ± 1.6 2.3 ± 1.8
VAS - Pain during ADL, /10,

�X±SD
5.1 ± 2.2 4.6 ± 2.3 5.4 ± 1.9 4.9 ± 2.4

VAS - Pain at night, /10, �X±SD 3.8 ± 2.8 3.4 ± 3.0 4.4 ± 2.8 3.0 ± 2.7
Medication�, n

(%)
NSAID 5 (13%) 2 (13%) 4 (19%) 1 (6%)

Venlafaxine 2 (5%) 0 (0%) 1 (5%) 1 (6%)

�X: mean; SD: standard deviation; DASH: Disabilities of the Arm, Shoulder and Hand questionnaire (a higher score indicates higher disabilities); VAS: Visual Analogue Scale (a
higher score indicates increased pain); ADL, Activity of Daily Living; NSAID, Nonsteroidal Antiinflammatory Drug.

* There were no statistical differences between the two subgroups for all variables (p P 0.05; independent t-tests or Chi-squared tests), except for symptoms duration.
� One participant (3%) took either pantaprazole, aldehyde, methocarbamol, buproprion, benzodiazepine, levothyroxine, nifedipine, atorvastatin, alfuzosin.

Fig. 1. Arm and electrodes position during cortical mapping.
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(1000x), bandpass filtered (20–1000 Hz), digitized at a sampling
rate of 2000 Hz (Power1401 interface; Cambridge Electronic
Design, Cambridge, United Kingdom) and stored on a computer
for off-line analysis. Prior to the experiment, subjects performed
isometric maximal voluntary contractions (MVC) in humeral lat-
eral rotation with the shoulder at 0� of elevation and in neutral
rotation. Two successive assessments were performed with an
inter-assessment interval of 30 s. Maximal value over the two
assessments was used to compute EMG targets for the experimen-
tal task (5 ± 1% of MVC). Visual feedback of actual EMG activity
level and targeted level of contraction were provided in real-time
on a computer screen placed in front of the subject. To ensure that
the EMG level was maintained stable through the experiments, the
EMG root mean square values obtained during a 50 ms time win-
dow preceding each TMS pulse was computed and recorded for off-
line analyses (Armstrong et al., 1993). All TMS measurements were
performed with the infraspinatus muscle slightly contracted (5%
MVC) as, in the relaxed normal arm, responses elicited in proximal
muscles are very small and require high intensities of stimulation
(Rothwell et al., 1991). Therefore, participants were asked to
actively maintain the arm elevated at 40� of humeral abduction
in the frontal plane during TMS measurements, and to monitor
their level of contraction on the computer screen in order to have
a contraction of the infraspinatus between 4 and 6% of MVC (bars
on the screen for the intervals and visual feedback of actual EMG
activity level) (Fig. 1). Trials were repeated when the level of con-
traction was lower than 4% or higher than 6% of MVC. Resting and
active cortical maps have been shown to be similar for hand mus-
cles in healthy subjects when differences in motor thresholds are
accounted for (Ngomo et al., 2011).

For all participants, the optimal location for stimulation of infra-
spinatus muscle (i.e. hotspot) was determined, as well as the active
motor threshold (aMT) at this site. The hotspot was defined as the
site at which MEPs are evoked with the lowest intensity of stimu-
lation, while aMT was defined as the minimal TMS intensity that
produced MEP amplitudes of at least 20% above background EMG
in at least 50% of the trials (6 trials out of 12) at the hotspot.

For the first 16 participants included in the study, motor map-
ping was also performed. Stimulations were applied at 110% of
individual aMT. Six successive pulses separated by intervals of
4.5 to 5 s were delivered to each stimulated site. A site was consid-
ered as active if at least two MEPs were elicited. Non-active sites
delimited the boundary of the map. Finally, stimulations were
applied at four different intensities at the hotspot (100%, 110%,
120% and 140% of aMT) to assess the input–output relationship;
the full input–output curve was not assessed, however. For all
measurements, stimulation intensity was adjusted based on each
hemisphere’s threshold. Therefore a difference in MEP amplitude
could not solely reflect a change in threshold (Gagné et al.,
2011). It was chosen not to map the entire motor representation
of the infraspinatus for all participants given the time needed to
perform such mapping bilaterally, and the lack of inter-hemisphere
statistical difference or trend following the preliminary analysis of
the first 16 participants.
2.4. Data pre-processing

TMS measures obtained included aMT for all participants
(n = 39), as well as MEPs obtained with four intensities of stimula-
tion (at 100%, 110%, 120% and 140% of aMT) and map center of
gravity (CoG) for the first 16 participants. CoG was computed for
the mediolateral (x) and anteroposterior (y) coordinates relative



Fig. 2. Comparison of active motor threshold (aMT) of the infraspinatus muscle
between both sides. The line represents the perfect similarity between the affected
and unaffected shoulder. aMT is significantly higher in the affected shoulder.

Fig. 3. Comparison of the location of the center of gravity of the infraspinatus motor
representation between both sides. Distance from vertex is indicated for the
mediolateral and anteroposterior axis. No significant difference was observed
between sides.
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to the vertex (expressed in mm) using the following formula:
CoGx = R(xi ⁄MEPi)/RMEPi and CoGy = R(yi ⁄MEPi)/RMEPi; where
MEPi represents the mean amplitude of the MEPs produced at one
site (Wassermann et al., 1992).

2.5. Statistical analyses

Descriptive statistics were first calculated for all variables to
summarize results. To verify whether there was asymmetry in
the motor representation of the infraspinatus muscle between
hemispheres, comparisons of aMT and CoG location were per-
formed between affected (hemisphere opposite to the affected
shoulder) and unaffected (hemisphere opposite to the unaffected
shoulder) sides using paired t-tests. The presence of differences
between sides in input–output relationship was assessed using
2 � 4 (side [affected/unaffected] x intensity [100, 110, 120, 140%
aMT]) repeated measures ANOVA. When a significant inter-hemi-
spheric difference appeared for a given TMS measure, background
EMG levels in the pre-stimulation period were compared across
sides (paired t-test) to verify that differences were not due to
changes in background EMG activity.

Pearson product-moment correlation coefficients were calcu-
lated between TMS measures with an inter-hemispheric asymme-
try and clinical variables including pain duration, pain intensity,
and DASH score. Finally, given that a significant correlation was
found between inter-hemispheric aMT asymmetry and symptoms
duration, it was decided a posteriori to divide the 39 participants in
two subgroups based on symptoms duration (low chronicity [6
12 months] and high chronicity [> than 12 months] participants)
and to compare to two subgroups for inter-hemispheric aMT asym-
metry using independent t-tests. In addition, for each subgroup,
one-sample t-tests were performed to determined if the mean
aMT asymmetry was significantly different from 0. All analyses
were performed with SPSS 21.0 for Mac and the significance
threshold was set at p < 0.05.

3. Results

3.1. Clinical variables

As shown in Table 1, mean pain duration was 19 ± 21 months.
Average pain intensity (out of 10) was 2.0 ± 1.7 at rest, 5.1 ± 2.2
during daily activities, and 3.8 ± 2.8 during nighttime. The average
DASH score (out of 100) was 29 ± 15.

3.2. TMS measures

A difference between sides was found for the aMT, aMT being
significantly higher for the affected shoulder (39% of maximum
stimulator output [MSO] ± 13%) comparatively to the unaffected
shoulder (35% of MSO ± 10%) (p = 0.01; t = 2.71) (Fig. 2). A higher
motor threshold indicates a decreased excitability on the affected
side, as a higher intensity of stimulation is needed in order to evoke
muscle responses. Note that no significant difference was found for
either the absolute or normalized (% of MVC) background EMG
during aMT assessment (p > 0.41). Thus, it is unlikely that lower
contraction levels on the affected side during TMS testing explain
the asymmetry in aMT.

No significant difference was observed between the two hemi-
spheres for the cortical map location (mediolateral and anteropos-
terior CoG location; p-values P 0.91) (Fig. 3). Finally, no significant
intensity x side interaction (p = 0.83) or main effect of the side
(p = 0.20) was found for the MEP amplitudes, indicating similar
input–output relationships for both sides once the differences in
aMT were controlled for (Fig. 4). Unsurprisingly, a main effect of
the intensity of stimulation was found (p < 0.001), reflecting
the fact that larger MEPs were obtained at higher stimulation
intensities.

3.3. TMS measures and level of pain and disability

A significant correlation (r = 0.45; p = 0.005) was observed
between asymmetry of aMT and pain duration. Subjects with more
chronic pain exhibited larger inter-hemispheric asymmetry. Sub-
group analyses showed that subjects with high chronicity (> than
12 months; mean asymmetry of 7% of MSO ± 9; n = 18) had signif-
icantly higher inter-hemispheric asymmetry (p = 0.021; t = 2.41)
compared to subjects with low chronicity (6 12 months; mean
asymmetry of 1% of MSO ± 5; n = 21). There were no other signifi-
cant differences between the two subgroups for clinical variables
such as age, pain intensity, and physical disability (Table 1). Mean
aMT asymmetry of the high chronicity subgroup was significantly
different from 0 (p = 0.006; t = 3.16), while the mean aMT asymme-
try of the low chronicity subgroup was not (p = 0.336; t = 0.99). For
the whole group, asymmetry in aMT was not significantly corre-
lated (p-values P 0.43) with pain intensity (at rest [r = 0.03], dur-
ing daily activities [r = -0.11], and during night time [r = -0.13])
or with physical disability (DASH score; r = -0.05). Similarly in
the two subgroups, asymmetry in aMT was not correlated (p-val-
ues P 0.16) with pain intensity (at rest [r < 0.31], during daily
activities [r < 0.21], and during night time [r < 0.12]) or physical
disability (DASH score; r < 0.23).

4. Discussion

This study investigated whether individuals with unilateral RC
tendinopathy exhibit changes in central motor representation of



Fig. 4. Comparison of input–output relationship for the infraspinatus muscle
between both sides. The average MEP amplitudes obtained at four intensities of
stimulation are shown. Note that the stimulation intensity was adjusted based on
each hemisphere threshold. The error bars represent the standard error of the
mean.
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the infraspinatus muscle, and whether these changes are related to
shoulder pain intensity or duration as well as to physical disability.
Our results show a significant inter-hemispheric asymmetry of
infraspinatus aMT, indicating decreased corticospinal excitability
on the affected side (hemisphere opposite to the affected shoulder)
compared to the unaffected side (in the absence of a difference in
the level of background EMG activity). Furthermore, chronicity of
pain, but not its intensity, appears to be a factor related to the
lower excitability of the infraspinatus representation. In a recent
review, Moseley & Flor hypothesized that while cortical reorgani-
zation correlates with the magnitude of pain in neuropathic pain
syndromes, it could be more related to chronicity in the case of
MSK disorders (Moseley and Flor, 2012). To our knowledge, our
study is the first to provide direct empirical evidence supporting
that view in patients with MSK disorders.

The results related to the inter-hemispheric asymmetry are
consistent with previous reports of alterations in corticospinal
excitability for shoulder muscles in patients with other MSK shoul-
der disorders. Alexander et al. reported increased aMT of the trape-
zius muscle in subjects with non-traumatic shoulder instability
compared to subjects without shoulder instability (Alexander,
2007). Berth et al. have evaluated the corticospinal excitability of
the medial head of the deltoid muscle in individuals with full
thickness RC tear (Berth et al., 2009). They reported that deltoid
muscles displayed a bilateral (compared to control subjects)
hyperexcitability at rest and hypoexcitability during voluntary
activation. The latter study, however, presents important method-
ological limitations and should therefore be considered cautiously:
motor threshold of a distal muscle was used to set the stimulation
intensity for the deltoid muscle (leading to very small MEPs in the
deltoid), and the level of background EMG was not properly con-
trolled for.

TMS studies conducted in other types of MSK disorders have
also shown alterations in corticospinal excitability, with some
reporting reductions in excitability and others reporting increases
(On et al., 2004; Strutton et al., 2003; Strutton et al., 2005). Some
studies have also reported disruption in intracortical inhibition in
patients with low back pain and complex regional syndrome type
1 (Masse-Alarie et al., 2012; Schwenkreis et al., 2003). However
while this phenomenon has been clearly demonstrated in patients
with neuropathic pain, results appear to be more variable in stud-
ies conducted in patients with MSK disorders, which might reflects
differences between pathologies (Schwenkreis et al., 2010;
Lefaucheur et al., 2006). Two studies included mapping experi-
ments. Displacement of the cortical map, that was not observed
in the present study, has been reported in low back pain patients
(Tsao et al., 2008), but not in patients with complex regional pain
syndrome (Krause et al., 2006). In a morphometric study, different
anatomical brain changes were found for chronic back pain, com-
plex regional pain syndrome and knee arthritis (Baliki et al.,
2011). The authors proposed the idea of a brain signature specific
to the injury. Pathophysiological characteristics of MSK disorders
could explain the apparent disparity of corticospinal changes
reported across studies. Difference in average pain duration might
also contribute to explain contrasting results between studies.
Unfortunately, the contribution of this factor is difficult to assess
as precise information on pain duration is lacking in many pub-
lished studies. Future work should carefully detail pain duration
for each participant.

The duration of pain was positively associated to aMT asymme-
try in our study. It suggests that the corticospinal excitability may
decrease over time for the affected shoulder. Change in corticospi-
nal excitability could be attributable to several causes. For exam-
ple, patients with MSK disorders experienced pain for a
prolonged period, and pain has been shown to exert an inhibitory
effect over M1 (for reviews see (Farina et al., 2003; Mercier and
Léonard, 2011; Bank et al., 2013)). It has recently been shown that
even low pain levels are sufficient to induce such inhibition, and
that the perceived pain level is not associated with the level of
inhibition (Dubé and Mercier, 2011). This might explain the lack
of association between pain intensity and aMT asymmetry in the
present study. Moreover patients typically move their affected
limbs differently from normal or avoid moving it in order to min-
imize pain during daily activities (Leeuw et al., 2007; Roy et al.,
2008). Some TMS studies looking specifically at the effect of immo-
bilization have reported a significant decrease in corticospinal
excitability (Facchini et al., 2002; Granert et al., 2011; Ngomo
et al., 2012). A recent study has also shown decreased cortical
thickness in M1 and primary somatosensory cortex as well as a
decrease in fractional anisotropy in the corticospinal tract after
two weeks of immobilization due to right upper extremity injury
(Langer et al., 2012). According to this hypothesis, it could have
been expected that the DASH score would correlate with the asym-
metry. This was not the case. However, one needs to keep in mind
that the DASH reflects the self-reported ability to perform certain
activities, and not how frequently the affected upper extremity
was used during daily life activities. The lack of quantitative mea-
sures of arm use is a limitation of the current study. A more direct
and quantitative measure of the amount of use of the affected limb
during everyday activities, for example using accelerometry, might
reveal associations between the amount of use and the changes in
corticospinal excitability.

Another potential limitation of this study is that 64% of
participants were affected on their dominant side, raising some
questions about the potential contribution of dominance to
the observed asymmetry. However results from studies in healthy
subjects do not support the view of such an inter-hemispheric
asymmetry for either hand muscles or the infraspinatus muscle
itself (Smith et al., 2011; Livingston et al., 2010; Ngomo et al.,
2013). Moreover, potential effects related to dominance cannot
account for the relationship observed between the asymmetry
and the symptoms duration.

In conclusion, this study is the first to investigate central motor
alterations in relation with RC tendinopathy. An interesting obser-
vation is that the chronicity of the pain, but not its intensity,
appears to be a factor related to the lower excitability of the infra-
spinatus representation. Longitudinal studies are needed in order
to better understand the role that such reorganization of motor
representations may play in the chronicity of pain. For example,
does the presence of central changes contribute to pain chronicity?
Further studies will also be required in order to evaluate the
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impact of rehabilitation and/or surgery on the central changes
observed in this population.
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